UNIT-2

Dictionaries: linear list representation, skip list representation, operations - insertion, deletion and
searching. Hash Table Representation: hash functions, collision resolution-separate chaining, open
addressing-linear probing, quadratic probing, double hashing, rehashing, extendible hashing.

DICTIONARIES:

Dictionary is a collection of pairs of key and value where every value is associated with the
corresponding key.

Basic operations that can be performed on dictionary are:

I. Insertion of value in the dictionary

2. Deletion of particular value from dictionary

3. Searching of a specific value with the help ofkey

Linear List Representation

The dictionary can be represented as a linear list. The linear list is a collection of pair and value.
There are two method of representing linear list.

1. Sorted Array- An array data structure is used to implement the dictionary.

2. Sorted Chain- A linked list data structure is used to implement the dictionary

Structure of linear list for dictionary:

class dictionary

!
L

private:
int k,data;
struct node
i
public: int key;
int value;
struct node *next;
+ *head;

public:
dictionary();
void insert d();
void delete_d();
void display d();

¥ void length();

Insertion of new node in the dictionary:

Consider that initially dictionary is empty then

head = NULL

We will create a new node with some key and value contained in if.

New

1 10 |NULL

DEPARTMENT OF CSE Page 1 of 19

Now as head is NULL, this new node becomes head. Hence the dictionary contains only one
record. this node will be ‘curr’ and ‘prev’ as well. The ‘cuur’ node will always point to current
visiting node and ‘prev’ will always point to the node previous to ‘curr’ node. As now there 1s
only one node in the list mark as ‘curr” node as “prev’ node.

New/head/curr/prev

1 10 | NULL

Insert a record, key=4 and value=20,

New

4 20 NULL

Compare the key value of ‘curr’ and ‘“New” node. If New->key > Curr->key then attach New node
to ‘curr’ node.

prev/head New curr->next=New
prev=curr
1 10 » 4 20 NULL
Add a new node <7,80> then
New
head/prev R curr 7 20 INULL
1 10 » 4 20 >

If we insert <3,15> then we have to search for it proper position by comparing key value.

(curr->key < New->key) is false. Hence else part will get executed.

7 80 |NULL

A 4

J3 |15

void dictionary::insert d()

]
v

node *p,*curr,*prev:
cout<<"Enter an key and value to be inserted:";
cin>>k;
cin>>data;

DEPARTMENT OF CSE Page 2 of 19

p=new node;
p-=key=k;
p->value=data;
p-=next=NULL;
if(head==NULL)

head=p;
else
curr=head;
while((curr->key<p->key)&&(curr->next!=NULL))
{
prev=curr;
CUIT=curr->next;
j
if{curr->next==NULL)
if{ curr->key<p->key)
!
curr-=next=p;
prev=curr;
clse
{
p-=next=prev->next;
prev-=next=p;
h
8
5
clse
i
p-=next=prev->next;
prev->next=p;
i
cout<<"nInserted into dictionary Sucesfully.... \n";
§

§
The delete operation:

Case 1: Initially assign “head” node as ‘curr’ node.Then ask for a key value of the node which is
to be deleted. Then starting from head node key value of each jode is cked and compared with the
desired node’s key value. We will get node which is to be deleted in variable ‘curr’. The node
given by variable ‘prev’ keeps track of previous node of ‘cuu’ node. For eg, delete node with key
value 4 then

cur

7 80 NULL

;V

DEPARTMENT OF CSE Page 3 of 19

Case 2:

If the node to be deleted is head node
i.c.. if(curr==head)

Then, simply make “head” node as next node and delete ‘curr’

curr head
1 0 " 3 15 * 4 20 7 80 NULL
Hence the list becomes
head
. o 7 80 NULL
3 15 4 20) d

void dictionary::delete_d()

f
[

node*curr,*prev;
cout<<"Enter key value that you want to delete...";
cin>>k:
if(head==NULL)
cout<<"\ndictionary is Underflow";
else
{ curr=head;
while(curr!=NULL)
{
if(curr-=key==k)
break:
prev=curr;
curr=curr->next;
y

s
4

§
if(curr==NULL)
cout<<"Node not found...";
else
3

if(curr==head)

DEPARTMENT OF CSE

Page 4 of 19

head=curr->next;
clse

prev->next=curr->next;
delete curr;
cout<<"[tem deleted from dictionary...";

1
3

The length operation:
int dictionary::length()
{
struct node *curr;
int count;
count=0;
curr=head;
if(curr==NULL)
d
cout<<"The list is empty”’;
return 0;
1
il
while(curr!=NULL)
!
countt+t;
cur=curr->next;
h

rcturn count;

1
I

SKIP LIST REPRESENTATION

Skip list is a variant list for the linked list. Skip lists are made up of a
series of nodes connected one after the other. Each node contains a key and value pair as well as
one or more references, or pointers, to nodes further along in the list. The number of references
each node contains is determined randomly. This gives skip lists their probabilistic nature, and the
number of references a node contains is called its node level.
There are two special nodes in the skip list one is head node which is the starting node of the list
and tail node is the last node of the list

\ 4
\ 4
\ 4

1 2 3 4 5 6 7
head tail
node node

The skip list is an efficient implementation of dictionary using sorted chain. This is because in
skip list each node consists of forward references of more than one node at a time.

DEPARTMENT OF CSE Page 5 of 19

[[t L et Tt gt [[P

Now to search any node from above given sorted chain we have to search the sorted chain from
head node by visiting cach node. But this searching time can be reduced if we add one level in
every alternate node. This extra level contains the forward pointer of some node. That means in
sorted chain come nodes can holds pointers to more than one node.

null |

A\ 4

NULL

A 4
\ 4

A 4
A 4
A 4

If we want to search node 40 from above chain there we will require comparatively less time. This
scarch again can be made efficient if we add few more pointers forward references.

\ 4

NULL

skip list

Node structure of skip list:

template <class K, class E>

struct skipnode

f
1

typedef pair<const K,E> pair_type;

pair_type element;

skipnode<K,E> **next;

skipnode(const pair_type &New_pair, int MAX):element(New_pair)
f

1

next=new skipnode<,E>*MAX];

DEPARTMENT OF CSE Page 6 of 19

The individual node looks like this:

Key value array of pointer

- J
hd

Element *next

Searching:
The desired node is searched with the help of a key value.

template<class K, class E>
skipnode<K,E=* skipLst<K.E>::scarch(K& Key val)

f
1

skipnode<K,E>* Forward Node = header;

for(int i=level;i==0;i--)

i

while (Forward Node->next[i]->element.key < key val)
Forward Node = Forward Node-=next[1];

last|i] = Forward Node;

!
$

return Forward Node->next|0];

t
]

Scarching for a key within a skip list begins with starting at header at the overall list level and
moving forward in the list comparing node keys to the key_val. If the node key is less than the
key wal, the search continues moving forward at the same level. If o the other hand, the node key
is equal to or greater than the key val, the search drops one level and continues forward. This
process continues until the desired key val has been found if it is present in the skip list. If it is
not, the search will either continue at the end of the list or until the first key with a value greater
than the search key is found.

Insertion:
There arc two tasks that should be done before insertion operation:

I. Before insertion of any node the place for this new node in the skip list is searched. Hence

before any insertion to take place the search routine executes. The last[] array in the search
routine is used to keep track of the references to the nodes where the search, drops down

one level.
2. The level for the new node is retrieved by the routine randomelevel()

template<class K,class E=

void skipLst<K,E=::insert(pair<K,E>& New pair)
i

if(New pair.key == tailkey)

;

cout<<"Key is too large”;

1
s

skipNode<K,E>* temp = scarch(New_pair.key);
if{temp->clement.key == New pair.key)

DEPARTMENT OF CSE Page 7 of 19

{
1

temp->element.value=New _pair.value;

return;

!
'

it*New Level = levels)

{

New_Level = ++levels;
last[New_Level] = header;

!
¥

skipNode<K,E> *newNode = new skipNode<K,E>(New pair, New Level+1);

for(int i=0;i<=New_Level;i++)

i

newNode->next[1] = last[i]->next[i];
last[i]->next[1] = newNode;

b

len++;

return;

i
¥

Determining the level of each node:

template <class K, class E>
int skipLst<K,E>:randomlevel()

J
[}

int IvI=0;

while(rand() <= Lvl_No)
Ivl=lvl+1;
if(lvl<=MaxLvl)

retumn Ivl;

else

return MaxLvl;

i
§

Deletion:
First of all, the deletion makes use of search algorithm and searches the node that is to be deleted.
If the key to be deleted 1s found, the node containing the key is removed.

template<class K, class E>

void skipLst<K,E>::delet(K& Key val)

}

if(key val>=tailKey)

return;

skipNode<K,E>* temp = search(Key val);
if(temp-=elemnt.key = Key val)

return;

for(int i=0;i<=levels;i++)

DEPARTMENT OF CSE Page 8 of 19

,
1

if(last[i]->next[i] == temp)
last[1]=>next[1] = temp->next|1];

!
y

while(level>0 & & header->next|level] == tail)
levels--;

delete temp;

len--;

!
s

HASH TABLE REPRESENTATION
¥ Hash table is a data structure used for storing and retrieving data very quickly. Insertion of
data in the hash table is based on the key value. Hence every entry in the hash table is
associated with some key.
» Using the hash key the required piece of data can be searched in the hash table by few or
more key comparisons. The searching time is then dependent upon the size of the hash

table.
» The cffective representation of dictionary can be done using hash table. We can place the

dictionary entries in the hash table using hash function.
HASH FUNCTION
» Hash function is a function which is used to put the data in the hash table. Hence one can

usc the same hash function to retrieve the data from the hash table. Thus hash function is
used to implement the hash table.
» The integer returned by the hash function is called hash key.

For example: Consider that we want place some employee records in the hash table The record of
employee is placed with the help of key: employee ID. The employee ID is a 7 digit number for
placing the record in the hash table. To place the record 7 digit number is converted into 3 digits
by taking only last three digits of the key.

If the key is 496700 it can be stored at 0" position. The second key 8421002, the record of those
key is placed at 2" position in the array.

Hence the hash function will be- H(key) = key%1000

Where key% 1000 is a hash function and key obtained by hash function is called hash key.

» Bucket and Home bucket: The hash function H(key) is used to map several dictionary
entries in the hash table. Each position of the hash table is called bucket.

The function H(key) is home bucket for the dictionary with pair whose value is key.

TYPES OF HASH FUNCTION
There are various types of hash functions that are used to place the record in the hash table-

1. Division Method: The hash function depends upon the remainder of division.
Typically the divisor is table length.
For eg; It the record 54, 72, 89, 37 is placed in the hash table and if the table size is 10 then

DEPARTMENT OF CSE Page 9 of 19

h(key) = record % table size 0
1
54%10=4 2 72
72%10=2 3
89%10-=9 4 54
37%10-7 5
6
7 37
8
9 89

2. Mid Square:

In the mid square method, the key is squared and the middle or mid part of the result is used as the
index. If the key is a string, it has to be preprocessed to produce a number.

Consider that if we want to place a record 3111 then

3111%=9678321
tor the hash table of size 1000

H(3111) =783 (the middle 3 digits)

3. Multiplicative hash function:
The given record is multiplied by some constant value. The formula for computing the hash key
is-

H(key) = floor(p *(fractional part of key*A)) where p is integer constant and A is constant real
number.

Donald Knuth suggested to use constant A = 0.61803398987
If key 107 and p=50 then

H(key) = floor(50*(107%0.61803398987))
= floor(3306.4818458045)
= 3306
At 3306 location in the hash table the record 107 will be placed.

4. Digit Folding:

The key is divided into separate parts and using some simple operation these parts are
combined to produce the hash key.
For eg; consider a record 12365412 then it is divided into separate parts as 123 654 12 and these
are added together

H(key) = [23+654+12
=789
The record will be placed at location 789

5. Digit Analysis:

The digit analysis is used in a situation when all the identifiers are known in advance. We
first transform the identifiers into numbers using some radix, r. Then examine the digits of each
identifier. Some digits having most skewed distributions are deleted. This deleting of digits is
continued until the number of remaining digits is small enough to give an address in the range of
the hash table. Then these digits arc used to calculate the hash address.

DEPARTMENT OF CSE Page 10 of 19

COLLISION

the hash function is a function that returns the key value using which the record can be placed in
the hash table. Thus this function helps us in placing the record in the hash table at appropriate
position and due to this we can retrieve the record directly from that location. This function need
to be designed very carefully and it should not return the same hash key address for two different
records. This is an undesirable situation in hashing.

Definition: The situation in which the hash function returns the same hash key (home bucket) for
more than one record is called collision and two same hash keys returned for different records is
called synonym.

Similarly when there i1s no room for a new pair in the hash table then such a situation is
called overflow. Sometimes when we handle collision it may lead to overflow conditions.
Collision and overflow show the poor hash functions.

0
For example, 1 131
Consider a hash function. 2
3 43
H(key) = recordkey% 10 having the hash table size of 10 4 44
5
The record keys to be placed are 6 ;2
7
131, 44, 43, 78, 19, 36, 57 and 77 8 712
131%10=1 9
44%10=4
43%10=3
78%10=8
19%10=9

36%10=06
57%10=7
779%10=7

Now if we try to place 77 in the hash table then we get the hash key to be 7 and at index 7 already
the record key 57 is placed. This situation is called collision. From the index 7 if we look for next
vacant position at subsequent indices 8.9 then we find that there is no room to place 77 in the hash
table. This situation is called overflow.

COLLISION RESOLUTION TECHNIQUES

If collision occurs then it should be handled by applying some techniques. Such a
technique is called collision handling technique.

I.Chaining

2.0pen addressing (linear probing)

3.Quadratic probing

4.Double hashing

5. Double hashing

6.Rchashing

DEPARTMENT OF CSE Page 11 of 19

CHAINING

In collision handling method chaining is a concept which introduces an additional field with data
i.e. chain. A separate chain table is maintained for colliding data. When collision occurs then a
linked list(chain) is maintained at the home bucket.

For eg;

Consider the keys to be placed in their home buckets are
131,3,4,21,61,7,97,8,9

then we will apply a hash function as H(key) = key % D
Where D is the size of table. The hash table will be-

Here D= 10

1 ——>| 131| —|—>|21| —|—>61 NULL

3 NULL

| 131 | 4’—> 61 | ~NULL
——>| 7 | —|—> Q7 | nULL

A 4

A\ 4

A chain is maintained for colliding elements. for instance 131 has a home bucket (key) 1.
similarly key 21 and 61 demand for home bucket 1. Hence a chain is maintained at index 1.

OPEN ADDRESSING — LINEAR PROBING

This is the €asiest method of handling collision. When collision occurs j e, when two records
demand for the same home bucket in the hash table then collision can be solved by placing the
second record linearly down whenever the empty bucket is found. When use linear probing (open
addressing), the hash table is represented as a one-dimensional array with indices that range from
0 to the desired table size-1. Before inserting any elements to this table, we must initialize the
table to represent the situation where all slots are empty. This allows us to detect overflows and
collisions when we inset elements into the table. Then using some suitable hash function the
clement can be inserted into the hash table.

For example:
Consider that following keys are to be inserted in the hash table

131,4,8,7,21,5,31,61,9,29

DEPARTMENT OF CSE Page 12 of 19

Initially, we will put the following keys in the hash table.
We will use Division hash function. That means the keys are placed using the formula

H(key) = key % tablesize
H(key) = key % 10

For instance the element 131 can be placed at

H(key) =131 % 10
=1

Index 1 will be the home bucket for 131, Continuing in this fashion we will place 4, 8, 7.
Now the next key to be inserted is 21. According to the hash function

H(key)=21%10
H(key) =1

But the index 1 location is alrcady occupied by 131 i.c. collision occurs. To resolve this collision
we will linearly move down and at the next empty location we will prob the element. Therefore
21 will be placed at the index 2. If the next element is 5 then we get the home bucket for 5 as
index 5 and this bucket is empty so we will put the element 5 at index 5.

Index Key Key Key
0 NULL NULL NULL
. 131 131 131
NULL 21 21
2
NULL NULL 31
3
4 4 4
4
NULL 5 5
5
NULL NULL 61
6
7 7 7
7
8 8 8
8
NULL NULL NULL
9

after placing keys 31, 61

DEPARTMENT OF CSE Page 13 of 19

The next record key is 9. According to decision hash function it demands for the home bucket 9.
Hence we will place 9 at index 9. Now the next final record key 29 and it hashes a key 9. But
home bucket 9 is already occupied. And there is no next empty bucket as the table size is limited
to index 9. The overflow occurs. To handle it we move back to bucket 0 and is the location over

there is empty 29 will be placed at 0" index.
Problem with linear probing:

One major problem with linear probing is primary clustering. Primary clustering is a process in

which a block of data is formed in the hash table when collision is resolved.

Key
19%10=9 cluster is formed >
18%10 = 8 i
39%10=9 8
29%10=9
8%10=28

rest of the table is empty
this cluster problem can be solved by quadratic probing.

8
QUADRATIC PROBING: 19

Quadratic probing opcrates by taking the original hash value and adding successive valucs of an

arbitrary quadratic polynomial to the starting value. This method uses following formula.

H(key) = (Hash(key) + i°) % m)

where m can be table size or any prime number.
for eg; If we have to insert following elements in the hash table with table size 10:

37,90, 55,22, 17, 49, 87

37%10=7
90% 10=10
55%10=5
22%10=2
11%10=1

Now if we want to place 17 a collision will occur as 17%10 = 7 and
bucket 7 has already an element 37. Hence we will apply

quadratic probing to insert this record in the hash table.
H; (key) = (Hash(key) 4 i) % m

Consider 1 = 0 then
(17+09)% 10=7

OO0 9O \Li W N~ O

90

11

22

L
wn

37

DEPARTMENT OF CSE

Page 14 of 19

(17 + 1) % 10 =8, when i =1

The bucket § is empty hence we will place the element at index 8.

Then comes 49 which will be placed at index 9.

49%10=9

Now to place 87 we will use quadratic probing.

B7+0)% 10 =7

(87 +1)% 10 = 8... but already occupied
(87 +27) % 10 = 1.. already occupied

(87 +3%) % 10 =6

It is observed that if we want place all the necessary elements in
the hash table the size of divisor (m) should be twice as large as
total number of clements.

DOUBLE HASHING

O 00 1N W bW N—=O

RN = O

O 0 0 N Dk

90

11

22

37

49

90

11

22

55

87

37

49

Double hashing is technique in which a second hash function is applied to the
collision occurs. By applying the second hash function we will get the number of positions from

the point of collision to insert.

There are two important rules to be followed for the second function:

e it must never evaluate to zero.
e must make sure that all cells can be probed.
The formula to be used for double hashing is

Hi(key) = key mod tablesize
Ha(key) = M — (key mod M)

where M is a prime number smaller than the size of the table.

Consider the following elements to be placed in the hash table of size 10

37,90,45,22, 17, 49, 55
Initially insert the elements using the formula for H(key).
Insert 37, 90, 45, 22

Hi(37) =37 % 10=7
H,(90) = 90 % 10 = 0
Hi(45)=45% 10=5
Hi(22) =22 % 10 =2
H,(49) = 49 % 10 = 9

key when a

22

iG]

DEPARTMENT OF CSE

Page 15 of 19

Now if 17 to be inserted then

Hi(17)=17 % 10="7

Hg(kcy) =M - (kcy % M)

Here M is prime number smaller than the size of the table. Prime number

smaller than table size 10 is 7

Hence M = 7

S

Ha(17) = 7417 % 7)
=7-3=4

That means we have to insert the element 17 at 4 places from 37. In short we ha
jumps. Therefore the 17 will be placed at index 1.

49

Now to msert number 55
H,(55)=55% 10=5 —» Collision

HA(55) = 7-(55 % 7)
-7-6-1

That means we have to take one jump from index 5 to place 55.
Finally the hash table will be -

Comparison of Quadratic Probing & Double Hashing

19

The double hashing requires another hash function whose probing efficiency is same as

some another hash function required when handling random collision.

The double hashing is more complex to implement than quadratic probing. The quadratic

probing is fast technique than double hashing.

REHASHING

Rehashing is a technique in which the table is resized, i.c., the size of table is doubled by creating
a new table. It is preferable is the total size of table is a prime number. There are situations in

which the rehashing is required.

e When table is completely full
e With quadratic probing when the table is filled half.
e When inscrtions fail duc to overflow.

Page 16 of 19

In such situations, we have to transfer entries from old table to the new table by re computing

their positions using hash functions.

Consider we have to insert the elements 37, 90, 55, 22, 17, 49, and 87. the table size is 10 and will

use hash function.,

H(key) = key mod tablesize

37%10=7
90 % 10=0
55%10=5
229%10=2

17 % 10 =7 Collision solved by linear probing
49% 10=9

Now this table is almost full and if we try to insert more elements collisions will occur

and

eventually further insertions will fail. Hence we will rehash by doubling the table size. The 4
table size is 10 then we should double this size for new table, that becomes 20. But 20 is not a
prime number, we will prefer to make the table size as 23. And new hash function will be

H(key) key mod 23

37%23=14

90 % 23 =21
55%23=9
229%23=22
17%23=17

49 %23 =3
87 %23 = 18

01NNk W — O

e}

10
11
12
13
14
15
16
17
18
19
20
21
22
23

55

87

37

19

Now the hash table is sufficiently large to accommodate new insertions.

Advantages:

DEPARTMENT OF CSE

Page 17 of 19

1. This technique provides the programmer a flexibility to enlarge the table size if required.
2. Only the space gets doubled with simple hash function which avoids occurrence of

collisions.

EXTENSIBLE HASHING

» Extensible hashing is a technique which handles a large amount of data. The data to be
placed in the hash table is by extracting certain number of bits.

» Extensible hashing grow and shrink similar to B-trees.

¥ In extensible hashing referring the size of directory the elements are to be placed in

buckets. The levels are indicated in parenthesis.

For cg:

Directory

Levels

0) oy «—

001 111
010

data to be
placed in bucket

» The bucket can hold the data of its global depth. If data in bucket is more than global

depth then, split the bucket and double the directory.

Consider we have to insert 1,4, 5, 7, 8, 10. Assume cach page can hold 2 data entries (2 is the

depth).

Step 1: Insert 1,4

Insert 5. The bucket is full. Hence double the directory.

1 =001
4 =100
We will examine last bit

of data and insert the data
in bucket.

DEPARTMENT OF CSE

Page 18 of 19

(0)

(1)

100

001
010

Step 2: Insert 7

7=111

But as depth is full we can not insert 7 here. Then double the directory and split the bucket.
After insertion of 7. Now consider last two bits.

1 =001

4 =100

5=101

Based on last bit the data

is inserted.

Step 3: Insert § i.e. 1000

00

vy (1)

100
1000

01 10 11
l (2) l (2)
001 111
010
01 10 11
? |
001 111
010

DEPARTMENT OF CSE

Page 19 of 19

